LSE - Small Logo
LSE - Small Logo

Simone Natale

Leah Henrickson

December 6th, 2022

The Lovelace Effect – AI generated texts should lead us to re-value creativity in academic writing

2 comments | 30 shares

Estimated reading time: 7 minutes

Simone Natale

Leah Henrickson

December 6th, 2022

The Lovelace Effect – AI generated texts should lead us to re-value creativity in academic writing

2 comments | 30 shares

Estimated reading time: 7 minutes

The continuing development of AI generated writing has led to a debate around its use in higher education. In this post, Simone Natale and Leah Henrickson, draw on their research into computational creativity and introduce the concept of the ‘Lovelace Effect’, to explain how creativity is often a product of social conventions and why as a consequence, educators and researchers should think carefully about what constitutes good writing in their fields.


The GPT-3 machine learning algorithm is the latest advance in AI technology, and it’s already being used by students to generate academic essays. That’s right, GPT-3 can write essays for you, and it’s pretty good at it. All you need to do is provide a prompt and the algorithm will do the rest.

The opening of this blog post was generated by GPT-3 itself, after being instructed to ‘[w]rite the first paragraph of a blog post about students using GPT-3 to generate academic essays.’ Indeed, GPT-3 is being used by students to produce convincing academic essays and, while the quality often leaves much to be desired, the technology is rapidly improving.

we wanted to find out why people perceive computers to be creative, not by asking how algorithms can achieve creativity and originality, but by focusing on how creativity is attributed by users

Discussions about how to respond to the proliferation of these systems in higher education are ongoing. Some argue that text generation systems ‘democratise cheating’ as students are able to generate essays about virtually any subject in a matter of moments, while others (often the producers of text generation software) contend that these systems may actually contribute to democratisation of education for students of varying abilities. What happens, however, if we momentarily set aside the question of cheating and reflect on the broader implications of these systems for educational practice? As new technologies often require people to reorganise their practices and approaches, software that can write student essays or scientific papers can encourage us to reflect on what is, or should be, distinctive in academic writing.

Machine creativity and the Lovelace Effect

In our research, we wanted to find out why people perceive computers to be creative, not by asking how algorithms can achieve creativity and originality, but by focusing on how creativity is attributed by users. We proposed calling situations in which humans perceive the behavior or output of a machine as creative, as the “Lovelace Effect,” nodding to computing pioneer Ada Lovelace. Specifically, we wanted to know what elements facilitate attributions of creativity. Using the example of software programmed to generate art, we showed how the emergence of the Lovelace Effect depended on a mixture of cultural ideas of creativity, actual software or hardware functionality, and the circumstances of presentation. For instance, if a computer-generated image is placed in an antique frame and exhibited in an art gallery, viewers may be more compelled to think of it as art, and its generating system as creative.

The Lovelace Effect recognises that any attribution of computational creativity is informed by historical and geographic factors. That is, different social circumstances lead to different social responses to ‘creative’ machines. Transposed into the debate about computer-generated essays, this means that while essay-writing systems change and improve over time, so too will our definitions of what constitutes a good and original academic essay. The ongoing development of these systems means that we should be regularly reviewing our expectations for academic writing, and striving to prevent educators falling into the Lovelace Effect.

Automatising academic writing

Although recent conversations about essay generation have been many people’s introduction to AI authorship, these systems have long been applied in journalism. Among the first genres of journalistic writing that were widely automatised were reports of sport results and market values. This is because it is relatively easy for machines to write fact-based texts that laconically report on football matches or changes in stock prices. If you ask a human journalist to write texts like these, they might produce very similar articles to the ones generated by software. If you ask the same journalist to write an editorial, though, the difference will be much more obvious.

Just as these tools call for reflections on journalism, tools like GPT-3 require a rethink of the kinds of skills that students should demonstrate in their assignments. Academic writing that follows more rigid structures, for example, may be more likely to be reproduced by a machine; these systems continue to struggle with maintaining consistent ‘trains of thought’ across longer terms, potentially making them less useful in more free-form disciplines like English literature or history.

Reflections on how precisely academic writing is creative and original can help us better understand how our academic writing can be moved away from undesired automatisation.

Regardless of the kind of text being generated, though, any application of the Lovelace Effect necessitates acknowledgement that qualities such as creativity and originality are projected by the receiver of a work. For example, a dramatic jump between two topics could reflect a generating system’s inability to maintain a global narrative, or it could be interpreted as a deliberate rhetorical choice that encourages reader to reflect through juxtaposition. Creativity may be a process, but it is a process recognised by a creator who is recognising their own work as creative. Even if a creator does not recognise a process as creative, another receiver of the output in question may deem the work creative. Reflections on how precisely academic writing is creative and original can help us better understand how our academic writing can be moved away from undesired automatisation. It can also help us better identify where automatisation may be useful, and where it may not.

The automatisation of academic writing should prompt us to reframe what we aim for in our writing and in the writing we train our students to do. As an additional benefit, such reflection will provide us with keener eyes to distinguish what has been written by a machine from what has been written by a human. Considering that automated writing will impact professional fields such as journalism, marketing, and academia, learning to write in a distinctive fashion may ultimately help students and educators better navigate the future that lies ahead.

 


This post draws on the authors’ paper, The Lovelace effect: Perceptions of creativity in machines, published in New Media and Society.

The content generated on this blog is for information purposes only. This Article gives the views and opinions of the authors and does not reflect the views and opinions of the Impact of Social Science blog (the blog), nor of the London School of Economics and Political Science. Please review our comments policy if you have any concerns on posting a comment below.

Image Credit: Adapted from Science Museum Group, Portrait of Ada, Countess of Lovelace (CC BY 4.0)


Print Friendly, PDF & Email

About the author

Simone Natale

Simone Natale is an Associate Professor at the University of Turin, Italy, and the author of Deceitful Media: Artificial Intelligence and Social Life after the Turing Test (Oxford University Press, 2021).

Leah Henrickson

Leah Henrickson is a Lecturer in Digital Media at the University of Leeds, and the author of Reading Computer-Generated Texts (Cambridge University Press, 2021).

Posted In: Academic writing | AI Data and Society | Higher education

2 Comments